## COLOR. LIGHT. PERCEPTION.

COLOR. LIGHT. PERCEPTION.
How color and light affect our understanding of visual and spatia perception be used as a design too within architectural education?

DREW J.P. SOVRAN, Graduate Thesis Candidate University of Detroit Mercy School of Architecture University of Detroit Mercy School of Ar
Master Thesis Studio | Arch 5100-5200 Fall 2020 - Winter 2021

## Studio Advisor

Christoph Ibele, M.Arch., B.A., University of Detroit Mercy
Acknowledgements
Claudia Bernasconi, M. Arch, B.S.A., University of Detroit Mercy
Claudia Bernasconi, M.Arch, B.S.A.. University of Detroit Mercy
Wladyslaw Fuchs, Ph.D., University of Detroit Mercy
Christoph Ibele, M.Arch., B.A., University of Detroit Mercy

| 01 abtrat | 20. 0 O |
| :---: | :---: |
| 02 tmeis samenent | 05.08 |
| 03 defmitos | 09.12 |
| 04 Lleaturemeen | ${ }^{13.24}$ |
| 05 pastion | ${ }^{25.28}$ |
| 06 cresulues |  |
| 07 Pessonalmextation | 43-78 |
| 08 crinue | ${ }^{29} .88$ |
| 09 citial bicusion |  |
| 10 netereses |  |

01

Color goes beyond our understanding of colo theory (blue + red $=$ purple, yellow + red $=$ orange etc.). When we begin to focus more in depth on how we visually perceive colors, as well as begin to isolate characteristics of colors, our subconscious understanding of color and visual perception may
change. This is not something that is typically noticeable immediately, but when we becom consumed within an experience that transforms ar visual perception, this becomes more apparent W how does this affect spatial pere in? Now, how does this affect spatial perception? Hoes human behavior?

Our visual and spatial perception are tied very closely together and have a direct influence on one anothe The way in which we experience a space may alter depending on the transformation of specific spatial variables, as well as the manipulations of color and light. Once our understanding of color perception ight. Once our understanding of color perception be introduced within architectural education, which will ultimately lead to alternative design approaches and methods.

02

This thesis will explore how the concepts of color and light become key elements in our visual and spatial perception. In fact, without the variables of color and light, visual and spatial transformations
would not be present. These variables become would not be present. These variables become
significant when creating different experiences, which ultimately affect the way we perceive a space; therefore affecting an individual's human comfort levels and behaviors.
A variety of experiments have been conducted which explore the concepts of light, color, space, setting, as well as a three-dimensional setting By derstanding how these concepts differ dependin on the dimensional qualities, allows for a more in depth and narrow focus of research to be present. he purpose of this thesis is to educate and make ndividuals aware of their own color perception, and xplain how this knowledge can then be introduced as a design tool within architectural education.

It's what's behind the eye that forms this reality we create. We like to think that this is the rational world but that isn't the way it works. We form our reality" (James Turrell).
Since these concepts are subjective to everyone, his thesis will focus on the different experiences ach individual participant has. Comparing thes experiences on an individual basis will be essential, ather than grouping individual experiences into specific categories.

Objective: Is an individual understanding of specific thing, that is not influenced by personal feelings or opinions. If something is "objectiver

Sensory Isolation: Occurs when one or more of our natural senses is reduced or eliminated, allowing the individual to heighten the other sense(s).
Spatial Perception: Is our ability to sense the size shape movement, and orientation of objects and/ or environments.

Subjective: Is an individual's understanding of specific thing, that is influenced by personal feelings, tastes, or opinions.
Time: Is the measured or measurable period durin which an action, process, or condition exists and/or being done.

Visual Perception: Is our ability to see, organize, and interpret the surrounding environment through the sense of sight.

Color Contrast: Is the difference in visual properties
that make an object (or its representation in an image) distinguishable from other objects and the background.
Depth Perception: Is the ability to see objects/ characteristics in a room in three dimensions ncluding the size and distance) and being able to arge how object/room characteristic is

Experience: Is a physical and/or mental individualized wledge/ understanding, that is obtained through direct participation or observation of an activity/ event.
Human Behavior: Is the range of actions and mannerisms exhibited by humans in conjunction mannerisms exhibited their environment.

Human Comfort: Is defined as the state of mind that expresses satisfaction with the surrounding environment. It provides a sense of ease and
relaxation for an individual.

04

Color and Space: Color can affect our perception of form, dimension, and the overall qualities of a space, The warmth and coolness of a color's hue, alon with its relative value and degree of saturation can determine the visual force with which it affects our attention, bring an object into focus, and/or create sense of space.
Chromatic Distribution: Is divided into the following three categories: foreground, midground, and background. Within these categories, decisions background. Within these categories, decisions be made. Objects that are at a closer distance to the viewer will be considered to be in the foreground o a room, whereas objects located further away from the viewer can be categorized into the background of the room.

The Spatial Effects of Color: May depend on various components. In a color: we can detect depth components. In a color, we can detect depth.
This is due to the contrast of light and dark, and the possibilities for changing the color saturation and distribution. This is directly dependent on color contrast, meaning the overall color of the background is just as important as the separate保 whereas purple can extrude).

Spatial Variables: Are specific characteristics withi a space that could potentially affect the way in which a space may appear. In some cases, a spac may appear smaller due to these variables, and in other cases, a space may appear larger due to hese variables. Spatial variables may include the位 position, reflectivity, materiality, and time

## COLOR CONTRAST

Color Contrast: Is the difference in visual properties
that make an object (or its representation in image) distinguishable from other objects and the background. This distinction between objects and the background, can be created through six types of contrast. Color contrast is a concept present daily, but often times, we are unaware of its impact Without color contrast, distinguishing objects both two-dimensionally and three-dimensionally would be impossible. Although the way we subjectively perceive color may be different for everyone, color contrast is still something that affects all individuals.
History of Color Contrast: Color contrast dates back centuries upon centuries but was strongly implemented during the Renaissance era. In art, way that high contrast pieces do, affecting the way individuals may interact or interpret a specific piece. Knowing the benefits and tools that color contrast holds, multiple art styles began to adopt such concept.

Chiaroscuro (Chiaro - Light, scuro - Dark): I s the use
of strong contrast between lights and darks (usuall of strong contrast between lights and darks (usually
bold contrasts) to affect a whole composition. This concept was used to achieve a sense of volume in modeling three-dimensional objects and figures, include the following: light source, highlights, cor shadow, reflected light, and cast shadow.

An artist who first brought Chiaroscuro to its fullest potential was Caravaggio, within his painting "The Deposition of Christ, 1481." He used strong contrasts of light and dark in figurative compositions to figures are portrayed against a black background but igures are portrayed against ablack background, but
the figures themselves are illuminated by a bright, the figures themselves are illuminated by a bright,
searching light that sets off their three-dimensiona forms. By doing this, it creates a sense of three dimensional space within the piece, and increase the visual interest of the overall composition



## CONTRAST TYPES

Color Contrast is the difference in visual properties that make an object (or its representation in an background. This distinction between objects and the background, can be created through six types of contrast:

1) Contrast Through Hue - Contrast through hue is (blue and orange)
(2) Contrast Through Value - Contrast through value is created when a $100 \%$ saturated color is present, and black and white is added to that color to alter
the specific hue.
(3) Contrast Through Saturation - Contrast throug saturation is created when a $100 \%$ saturated color
is present, and another hue (not black or white) is
added, which alters the specific hue.
(4) Triadic Contrast - Triadic contrast is created when hree colors are evenly spaced on the color whee (three primary colors).
2) Contrast Through Temperature - Contrast through emperature is created when two colors from the same warmth or coolness is compared (yellow and red).
(6) Simultaneous Contrast - Simultaneous contrast
when a $100 \%$ saturated color is isolated within neutral pallet.

Color contrast is a concept present daily, but ofte we are unaware of its impact. Without color contrast, distinguishing objects both two-dimensionally and three-dimensionally would be impossible. Although the way we subjectively perceive color may be fill something that affects all individuals in order to understand the effects color and light may have on our visual and spatial perception, understanding the six types of color contrast become significant.
 iigure 4.5
contrast Through Value Diagram

figure 4.6 .


## DE STIJL MOVEMENT

The De Stijl Movement was founded in 1917 and asted until 1931. This movement embraced a abstract, pared down aesthetic, centered in basic visual elements such as geometric forms and primary colors. The Rietveld-Schroder House in 1924,
designed by Gerrit Rietveld is one example that showcases the essence of the De Stijl Movement. This house was originally made for Widow Truus schroder-Schrader to have a house where she could mourn the death of her husband openly with her children and live in a way that broke with all the raditions of the time. She wanted simplicity and space that was open

The house used clean horizontal and vertical lines, primary colors, and non-colors (black and white). Inside the home, there was no static accumulation of rooms, but instead; the use of triadic contrast (refer to Figure 4.7) created zones for different
programs within the house. The colors were chosen programs within the house. The colors were chosen
to strength the plasticity of the facades as well, while the surfaces were in white and shades of grey to create another form of color contrast. The RietveldSchroder house is a prime example of how color contrast can be used within architecture for both functionality and aesthetic purposes.


05

Color and light are major factors that affect our visual and spatial perception. During these moments of transformation, components and concepts with in the experience can alter and/or transform the way
we perceive something. The way we may perceive
a space can directly affect the way humans respond
to that space; both in comfort levels and human
behavior This experience happens on an individual basis and cannot be catesorized or soreuped. Although similarities between experiences ma arise, perception is a subjective concept affected by multiple other personal factors. This mean
that every transformation will be unique, persona and the discovery or awareness of surroundin

06

This chapter discusses multiple artists and designers whose work focuses on the concepts of color,
light, and perception. When reviewing these light, and perception. When reviewing these
concepts, multiple perspectives and theories arise concepts, multiple perspectives and theories arise
which become significant in the overall thesis

## JAMES TURRELL

James Turrell, who is an American artist, explores the concepts of perception, color, light, and space, creates. One of these installations being "Skyspace" in 2005
"We actually give the sky its color as well as its shape. It's what's behind the eye that forms this reality we create. We like to think that this is the rational world we're receiving through our senses, but that isn't the do is gentle reminders of how we do that. In fact, we de-form reality" (James Turrell).

Turrell explains how his work becomes a tactile experience as well. Due to the high contrast of colors and spatial qualities it creates within the interior, individuals often feel a tactile sensation when consumed in the space. James Turrell creates
experiential art pieces that challenge the boundaries experiential art pieces that challenge the boundaries the timeless and selfless perceiving, the viewer merges with the art piece.
"In working with light, what is really important to me is to create an experience of wordless thought,
to make the quality and sensation of light itself something really quite tactile it has a quality seemingly intangible, yet it is physically felt. Often people reach out and try to touch it" (James Turrell).

This installation consists of a small circular room, with a oculus located at the center of the ceiling.
This oculus is directly connected to This oculus is directly connected to the exterior environment. The perimeter of thich is constantly
is lined with artificial lighting, which is lined with artificial lighting, whe day. As individuals enter this space, the interior walls are flooded with artificial colored light, allowing the viewer to feel completely consumed within the space. As the viewer looks through this center oculus, the contrast of the sky color and the artificial light, begins to alter our visual perception:
"As a dusk change in sky color develops, even a dull gray sky with only a slightly blue cast outside becomes a dark ultramarine when seen from inside" (James Turrell).
 reality of the world. His work makes the audience aware of certain characteristics, that we otherwise
would not notice on a daily basis. One aspect of this would not notice on a daily basis. One aspect of this
installation that becomes essential to the human experience is the concept of time. Time becomes a prominent factor that plays a role in the way individuals visually and spatially perceive this space. Entering a Skyspace installation for only 30 seconds will not give that individual a long enough time to truly understand and capture the whole experience.
In comparison, an individual who walks into a In comparison, an individual who walks into a
Skyspace installation for 5 minutes, may experience a larger shift and transformation of perception.




James Turrell - Skyspace Installation (2005)

## OLAFUR ELIASON

Olafur Eliason, born is Denmark, is another artist who explores the concepts of color, light, and perception within his installation work. Eliason creates work that continually prompt viewers to think about the nature of perception. Many of his installations play with reflections, inversion, aftermages and shifting colors, to challenge the way we navigate and perceive our environments.

Within his "Room for One Color" installation in 1994, participants enter a completely saturated yellow lit room. Due to the intensity of this light, all colors, and surfaces (regardless of the shade, hue, tone, or value within it) become monochromatic. he participants who enter the room, immediately experience a shift in their visual perception.
"The experience of monochromatic light offers us The experience of monochromatic light offers us f viewing the world with a recalibrated perceptual apparatus. It makes us aware of the limits of our senses and helps us to see the reality of our color perception" (Olafur Eliason).
"Understanding how we see color can make us reconsider how we constitute the world. By reducing experience to a minimum, the monochrome allows us to reflect on what is happening when we perceive something, on how perception is also a type of world making. For a moment, we can imagine what it might be like to become colour-blind" (Olafur Eliason).
"Over the years, in making art, I have constantly explored issues dealing with space, time light explored issues dealing with space, time, light,
and society. I am particularly interested in how the light of a space determines how we see that space and similarly, in how light and color are actually phenomena within us, within our own eyes" (Olafur Eliason).
When individuals exit this completely yellow saturated room, there is a specific time frame that our eyes need to readjust to the different lighting and exterior environment. During this time of readjustment, the participants may experience the concept of after-image. One individual who explains this concept of after-image is Josef Albers within his "Interactions of Color" in 2013


## JOSEF ALBERS

Josef Albers was born in 1888 in Bottrop, Germany. Albers enrolled in the Bauhaus in 1920. Five years later, he became the first student to be invited to
join the Bauhaus as a Master's Instructor. He was an join the Bauhaus as a Master's Instructor. He was an
educator before he was a professional artist. From here, Josef pursued a passion of art and went on to write a book titled, "The Interaction of Color."
Within Josef Albers book, "The Interaction of Color" in 2013, he discusses the concept of after-image.
The human retina is tuned to receive any of the The human retina is tuned to receive any of the three primary colors (red, blue, and yellow), which
constitutes all colors. When we begin to stare at a constitutes all colors. When we begin to stare at a
specific color (yellow for example), that color will begin to fatigue the yellow-sensitive parts of the eye. This means with a sudden shift to white, only the mixture of red and blue will occur, creating the complementary color of yellow, being purple.

This process is called after-image and is how Olafur fiason extends this experience of his installation. Josef Albers uses an example of two circles. If we were to stare at the center of a red circle for 30 seconds, then quickly look at the center of a white circle, the white circle may appear green. The phenomeno cof seeing green (in this case) instead
of white is called after-image. This concept, "proves that not even the most trained eye is foolproof against color deception."


## EXPERIMENT I - SWATCHES

To explore the concepts of light, color, and perception After conducting this experiment, understanding
in greater detail, a video that explores the use of what the relationship between artificial colored light,
in greater detail, a video that explores the use of
colored light to alter our visual perception of specific the relationship between artificial colored light,
and specific color swatches became significant. More
color swatches was produced. These color swatches specifically, understanding what the transformation
hduded red, blue, yellow, green, purple, orange, black, and white.

The video starts and ends by displaying the color swatches in natural daylight, which allows the
viewer to experience the swatches without any viewer to experience the swatches without an color alterations. When the colored light is turned
on, a shift within the color swatches will occur In some cases, the colored light will enhance the swatches, and in other cases, the colored light w
diminish the intensity of the swatches completely Depending on the colored light, some swatches may appear completely different as well. By focusing on one key element, "it makes us aware of the limits of our senses and helps us to see the reality of our color perception. Understanding how we see color can make us reconsider how we constitute the be an experience for the viewer and challenge th participants' visual perception.


| white ught | white | RED | blue | yelow | orange | PURPLE | Green | BLACK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIM. Colors | N/A |
| intenstry | 255 | 100.3 | 82 | 156.3 | 122 | 132.6 | 65.3 | 0 |
| Red light |  |  |  |  |  |  |  |  |
| SIM. Colors | 1 | 1 | 2 | N/A | 1 | N/A | 2 | N/A |
| Intenstry | 99 | 99.6 | 41.6 | 117.6 | 82.6 | 80.3 | ${ }^{43}$ | 11.6 |
| вLеE light |  |  |  |  |  |  |  |  |
| SIM. Colors | 1 | 1 | 2 | 3 | 3 | 2 | N/A | N/A |
| Intenstr | 100.6 | 90.3 | 59.6 | 36.6 | 36.6 | 68 | 33.3 | 20.6 |
| yelow light |  |  |  |  |  |  |  |  |
| sim. Colors | 1 | 2 | N/A | 1 | 2 | N/A | N/A | N/A |
| intenstr | 125.6 | 79.6 | 51 | 116 | ${ }^{83.3}$ | 87.6 | 52 | 16.3 |
| PURPLE LIGHt |  |  |  |  |  |  |  |  |
| SIM. Colors | 1 | 2 | N/A | 2 | 2 | 1 | N/A | N/A |
| Intenstry | 147.3 | 94.6 | 80.3 | 97 | 89.3 | 108.6 | 60 | ${ }^{37}$ |
| Green light |  |  |  |  |  |  |  |  |
| sIM. Colors | 1 | 2 | 3 | 1 | 2 | 3 | N/A | N/A |
| Intensity | 77.6 | 19.6 | 41.6 | 56.3 | 20.3 | 42.6 | 60 | 14 |

Figure 7.4
Experiment

| Experiment I |
| :--- |
| Swatch Analysis Results |


| WHITE LIGHT | WHITE | PINK | LIGHT | LIGHT | LIGHT | LIGHT PURPLE | $\underset{\text { Light }}{\substack{\text { GREEN }}}$ | BLACK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIM. Colors | N/A |
| intenstry | 255 | 185 | 208.3 | 212.3 | 145.6 | 147 | 130 | 0 |
| red light |  |  |  |  |  |  |  |  |
| SIM. COLors | 1 | 2 | 2 | N/A | N/A | 2 | 1 | N/A |
| intenstry | 99 | 56.6 | 46 | 117.6 | 76 | 80.3 | 82.6 | 11.6 |
| blue uight |  |  |  |  |  |  |  |  |
| SIM. Colors | 1 | 1 | N/A | N/A | N/A | 1 | 1 | N/A |
| intensity | 100.6 | 74 | ${ }^{73.3}$ | 62.3 | 103 | 83 | 86 | 20.6 |
| yelow ught |  |  |  |  |  |  |  |  |
| SIM. Colors | N/A |
| intenstry | 125.6 | 105.3 | 14.6 | 200.6 | 173 | ${ }^{133.3}$ | 215 | 16.3 |
| PURPLE LIGHt |  |  |  |  |  |  |  |  |
| SIM. COLORS | N/A | 1 | N/A | 1 | N/A | N/A | N/A | N/A |
| Intenstry | 147.3 | 163 | 136 | 170 | 149 | 146.3 | 205.6 | 37 |
| Green light |  |  |  |  |  |  |  |  |
| SIM. COLORS | 1 | 2 | 1 | 1 | 2 | N/A | 1 | N/A |
| intenstry | 77.6 | 40.6 | 66 | 65 | 44.3 | 47.6 | 64 | 14 |

When discussing how color and light affect our spatial perception, it is important to look at the multiple variables and components that could play
a role in that transformation, in a three-dimensional a rote in that transformation, in a three-dimensional
setting. To understand what these spatial qualities were, a second experiment was conducted. This experiment consisted of an $8^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}$ box, with a light source located at the center of the ceiling. As the light filtered through this model, it began to highlight key variables of the box. These variables all playing a major role in the way we could potentially
perceive a space.

Form: The physical form of a space can create spatial qualities in itself. A room with curves can reflect light differently than a room that is rectilinear. As a
result, this can affect the way we may visually and/or spatially perceive a space.

Light Color: Depending on the lighting, specific colors will begin to visually appear different (proved in Experiment 1 - Swatches). By changing the light color, it can alter our visual perception, which can affect our spatial percention of a space.

Light Intensity: Depending on the lighting intensity, this can affect the way we perceive specific colors. When light levels are extremely low, our eyes will need to adjust and adapt to the darkness. During this transformation, it can alter the way we perceive a space.

Light Source: The way a light source is positioned within a room can affect the way in which light diffuses into a space. Placing a light source in the corner of a room verses the center of a room will affect how that space can be perceived. The location of the light source can also affect the way a light will diffuse within a space, which can affect our spatial perception.

Materiality: The type of materials found within a space can have a large impact on the way light diffuses into a space. Materials with more texture will disrupt the alter light infiltration, while smoother materials will allow for more light to evenly distribute within a space.

Physical Position: The way in which we are physically positioned within a room can have a large impact on positioned within a room can have a large impact on
the way we perceive a space. Standing in the corner of a room can make a room appear larger, while standing in the center of the room can make a space appear smaller.
Room Borders: When two colors are next to one another, it allows our eyes to visually see the borders of a room. By using colors in a strategic way, we
can use contrasting colors to challenge our visual perception, which can affect our spatial experience of the space.

Reflectivity: Colors that have a higher reflectivity llow more light to bounce off of them and into the pace. The increase of light within the space allows for more open and spacious qualities. In comparison, colors with lower reflectivity absorb more light, which makes the room feel more intimate.

Shadows: For a space to feel three-dimensional, hadows must be present. Shadows become a way in which we can define borders, as well as give objects their dimension.

Time: The time in which an individual spends within a space can affect the way that individual visually and spatial perceives a space. A shorter amount of time spent within a space can make a space appear arger, while a longer amount of time spent within a space can make a space appear smalle,
Without the variables of color and light, visual and Without the variables of color and light, visual and
spatial transformations would not be present. These variables become significant when creating different variables become significant when creating different
experiences, which ultimately affect the way in which we choose to move within a space. To understand how these variables affect our spatial perception understanding the relationship between color and light, and other spatial variables is essential.

## EXPERIMENT III - PERCEPTION

Depth perception is the ability to see objects and characteristics in a room three-dimensionally (including the size and distance) and being able to judge how far that object or room characteristic is from the participant. Depth perception mainly deals with the ability to judge the distance and size of objects, but there are many spatial factors that
can affect the way we perceive that object as well. These factors were explored in Experiment 2 - Spatial Variables and include the following: light color, light source, room borders, room shape, lighting intensity, shadows, physical position, reflectivity, materiality, shadows, physical postion, reffectivity, materialty,
and time. These outside spatial variables have a large impact that can change the way we visually perceive an object. This means that to understand depth perception, sensory isolation and the creation of a uniform visual field must be present. To create a uniform visual field, finding ways to organize and structure specific spatial variables, while altering others is significant in understanding the relationship between colored light and depth perception.

Sensory Isolation: Occurs when one or more of our natural senses is reduced or eliminated, allowing individuals to heighten their other sense(s). This concept will also be a factor in how to create uniform visual field. Reducing our senses to just leading to stronger changes in how they perceive the color, shape, size, and distance of an object

To understand the interaction between colo light, and depth perception in greater detail, three-dimensional experiment was conducted. was curious on how the single spatial variable of colored light would change the appearance of the thall residential home with a narrow hall way This hallway was exactly $3^{\prime}-0^{\prime \prime}$ wide and spanned $12^{\prime}-0^{\prime \prime}$ long All surfaces (apart from the dark grey hardwood flooring) were white surfaces. On the left-hand side of the hallway, there is a small closet with a sing light source centered on the ceiling of the hallway.

By only having a single light, I was able to concentrate he colored light in one specific area. All other light sources in the area were eliminated to avoid any secondary light source interruptions. A camera was an set up on a tripod to keep all images captured at the same level and height. By doing this, it ensured hat if differences in images occurred, it would be
based off of our perception, and not error in the camera angle. This experiment was then tested under red, blue, and white light.

The three images that were captured were then compiled in a single document where participants culd individually analyze and view the images. then asked each participant to simple state:

In which image did the end of the hallway appear further away, and in which image did the end of the hallway appear closer?

It was interesting to see how individuals' (including myself) perception of the space changed based on the single spatial variable of light color. After reviewing all the participants' responses, I noticed that there were no distinct patterns or favored participants may have had the same answer but th other participants may have thought the complete opposite.


## EXPERIMENT IV

This experiment analyzed how the change of colored light can affect the way an individual visually and spatially perceives a space. In addition, the time spent in that space, as well as how the individual's human behavior and comfort levels may change depending on the light color that is present. Understanding
the effects that colored light has on our visual and the effects that colored light has on our visual and
spatial perception and human behavior is significant to the understanding of human comfort levels and individual experiences. It also plays a role in the time an individual would want to spend within a space. Understanding these concepts can make individuals more aware of the influence lighting has on the it can cause individuals.

The experiment was conducted within a closed off corner in a residential dwelling, where all wall surfaces were painted white. At the center of the ceiling, a single light source was located. This was the only light source in this area when the experiment was being conducted. By only having a single light,
I was able to concentrate the colored light in one I was able to concentrate the colored light in one
specific area. All other light sources in the area were eliminated, to avoid any secondary light source interruptions. On the floor, foot markers were present to indicate where participants would stand during the experiment. The following instructions were given to each participant:
(1) When you enter the space, stand on the foot markers looking towards the blank white wall. (2) When you are in position, close your eyes aricipant would close their eyes, and I would adjust the lighting to the colored light I am testing). (3) When I say go, you can open your eyes and I wa you to count to a minute.
adiust the lights back teached, say "done" and I will adjust the lights back to its natural white colo
(5) A series of questions were then asked to participant.

Red Light - 1:05.40
Blue Light - 1:09.30 (Longest TIme)
Blue Light - $1: 19.27$ (Longest Time)
Yellow Light - 1:00.16 (Quickest Time) Yellow Light - $1: 08.48$ (Quickest Time)
Best Lighting Condition - Red
Best Lighting Condition - Red
Worst Lighting Condition - Yellow

Red Light - 1:08.40 (Longest Tlme) Blue Light - 1:06.47
Yellow Light - 55.30 (Quickest Time) Best Lighting Condition - Yellow Bost Lighting Condition - Red
Wown

Participant 3
Red light - 51.98 (Quickest Time)
Yellow Light - 1:06.55 (Longest Time) Best Lighting Condition - Blue Worst Lighting Condition - Red

Best Lighting Condition - Red Worst Lighting Condition - Yellow

Participant 5
Red Light - 59.83 (Quickest Time) Blue Light - 1:19.92 (Longest Time) Yellow Light - 1:16.96
est Lighting Condition - Red Worst Lighting Condition - Blue

## Participant 6

Red Light - 55.82 (Longest TIme) Blue Light - 56.93 (Longest TIme) Best Lighting Condition - Blue Worst Lighting Condition - Yellow

After conducting this experiment, a series of questions regarding each individual's experience was made. These questions include the following: with the colored light most disliked? What is the relationship between the most disliked color and time of each participant? Did the participant experience after-image? What is the relationship between room comfort and each participant's spatial and each participant's spatial perception? What is the relationship between physical human behavior and each participant's spatial perception?

1) What was the human behavior of each participant with the colored light most disliked? Each participant experienced similar human
behaviors when in a space with the lighting color behaviors when in a space with the lighting color human behaviors that were seen throughout the participants. These include the following: fidgeting, heavy breathing, swaying back and forth, and an ncrease in blinking. The most common human ehavior being fidgeting. In all six participants, participants were under their least desired lighting color.
(2) What is the relationship between the most disliked color and time of each participant?

It was interesting to see if there was any relationship between the length of time spent under each colored light and the least favored lighting option for each participant. When analyzing the data collected,
four of six participants' quickest times were counted under the lighting option they least desired. These same four participants also experienced similar emotional responses of uneasiness, anxiety, and stress. In terms of physical human behavior, there were strong urges to leave the space or move fidgeting from each of these four participants when under the lighting option they least desired.
(3) Did the participant experience after-image?

Each participant did experience after-image (at least once) within the three lighting options. experiment, blue light had the largest response between participants. All six participants responded saying that once the blue colored light was turned back to white light, everything appeared to have a strong yellow/orange hue to it. When conducting the experiment with red light, four of the six participants
experienced after-image. These four participants all responded saying that once the red colored light was turned back to white light, everything appeared to have a strong green hue to it. Finally, when this experiment was conducted with yellow light, four of
the six participants did experience after-image. These four participants all responded saying that These four participants all responded saying that
once the yellow colored light was turned back to white light, everything appeared to have a strong blue/purple hue to it. It was interesting to hear the responses of each participant because all the responses were very consistent both in the afterme colter-image occurred (5-10 seconds).
(4) What is the relationship between room comfort and each participant's spatial perception?
After conducting this experiment, a room that may appear larger and more spacious, does not necessarily mean that an increase in human comfort will be present. In multipl experiments conducted,
the space that felt the most spacious, was the space the space that felt the most spacious, was the space
that participants felt the most uncomfortable in. This was true for participant 1, participant 5, and participant 6. In comparison, other participants had the complete opposite feelings towards larger spaces. Participant 2, participant 3, and participant 4 ll had an increase in comfort levels when in spaces that appeared larger.

What is the relationship between time and each participant's spatial perception?

Ater conducting this experiment, I do not believe hat there was a strong correlation between the
amount of time an individual spends in a space (dependent on the lighting color) and the way an individual spaciously perceives that space. In some fintances, participants stayed in more intimate not show strong enough patterns or relationships to conclude this statement. There is not a strong relationship between an individual's spatia participant stayed in that space.
(6) What is the relationship between human behavior and each participant's spatial perception?

Although each participant's experience was on an individual basis, in all six participants' experiences, there was a common theme of little to intimate and small. In some cases, the space that appeared the smallest was the space participants felt the least comfortable. These participants described the space as if they could not move and felt restricted. In other situations, some participants felt the most comfortable within more intimate spaces and described the space as relaxing.
Therefore, regardless of the reasoning behind why participants experienced little to no movement, the lack of physical human behavior happened when participants were in spaces that appeared more intimate and small.
(1) What was the human behavior of each participant with the colored light most disliked?

(2) What is the relationship between the most disliked color and time of each participant?

(3) Did the participant experience after-image?

$\underset{\substack{\text { Fijure } \\ \text { Experiment } \\ 7.12 \\ \text { V Diagram (3) }}}{ }$
(4) What is the relationship between room comfort and each participant's spatial perception?

(5) What is the relationship between time and each participant's spatial perception?


(6) What is the relationship between human behavior and each participant's spatial perception?


## EXPERIMENT V

Up to this point, I have been studying how colored light affects that way I visually and spatially perceive a space, as well as how these concepts affect human comfort and behavior. For this next investigation, I wanted this process to be as organic as possible without having constraints or uniform variables unlike my pervious experiment that was tested. To do this, I simply altered the lighting of $m y$ room to the desired light color and situated myself in my have any set tasks to complete. It was up to myself to chose what to do within that space during this set
time frame.

## RED LIGHT

The first aspect I noticed was the scale of the This happened with any object I would look at. space. Within seconds of the light changing from The objects' physical features appeared stronge white to red, the room size appeared smaller. I also and more contrast in shadows and highlights were mmediately noticed how all the objects in my room present. The physical object borders became more became monochromatic. This was something I have distinct as well. For example, when I was looking at previously studied in Experiment I-Swatches. This my bed linens, the red light enhanced my ability to dea of monochromatic spaces was also studied by focus on the folds of the sheet. Although the folds
Olafur Eliason in his installation titled, "A Room for
were organic, there was still a sense of uniformity to Olafur Eliason in his instalation titled, "A Room for were organic, there was stil a sense of uniformity to
One Color." Since I have previously studied these
them, that I never noticed with white light. Although relationships and concepts, I was able to anticipate I could not see the true color of the objects due these results. My main concerr for this experiment to the monochromatic feature of the light, these was to look past what I already investigated and see features of the objects were still more vivid. The what else my perception could uncover. While in $m y$ original color of the object held no relevance when oom, I noticed details that I have not noticed before
thinking of the objects' values beyond the surface,
about this space. Firstly, when the red light was
The red light led my percention in noticing the about this space. Firstly, when the red light was
The red light led my perception in noticing the
present, my attention to detail strongly increased. details of an object regardless of its original color, Instead of seeing a singular object in my room, I which was something I have never noticed before. noticed the details and patterns that made up that particular object instead.


## BLUE LIGHT

The second light color that was tested was blue For example, when staring at my tapestry, I wa ight. Similarly to the red light, the blue light made able to distinguish the tones and values of each all objects and surfaces monochromatic. In this case, color of the tapestry much easier than when under
when the lighting was changed from white to blue
white light. The tapestry consists of three beige when the lighting was changed from white to blue white light. The tapestry consists of three beige
light, the room appear much larger. The physical tones, making it hard to recognize which values are light, the room appear much larger. The physical
oom borders, as well as the borders of objects, did making it hard to recognize which values are
lighter and darker. When under blue light, it made not appear as distinct as they did under red light. The the process of analyzing the color values much same happened when analyzing the patterns and more identifiable. Since the details in the tapestry same harpened when analyzing the patterns and
more identifiable. Since the details in the tapestry
details within the objects. It was much more difficult
were not as visible as they were under red light, de notice the details and patterns within objects the colors of the tapestries looked very consistent. Inder this lighting condition. However, one aspect Due to the presence of the blue light, my perception that was prevalent was the actual color blocking of of the object changed. I was able to identify and
each object. Color blocking is made up of the three
analyze the tapestry in a different way allowing me dimensions of color (hue, value, and saturation). to uncover information regarding a specific object that I would not have noticed under a white lighting condition.



Experimentvo Diagram
Bue Lighting Condition

## YELLOW LIGHT

The final lighting condition that was tested These imperfections were exceedingly small and was yellow light. Like the previous two lighting minor imperfections that were easily missed during conditions, the yellow light made the space the other lighting conditions. However, they were monochromatic. The size of the room appeared the enhanced with the yellow light. For example, I was
largest out of the three conditions. This lighting able to notice how my two art prints were slightly largest out of the three conditions. This lighting able to notice how my two art prints were slightly
condition in relation to the other two condition, off in height, as well as how my tapestry was slightly triggered more human movement and discomfort. on an angle. What made this most interesting to found myself getting agitated and annoyed by me was the fact that this lighting condition was the the light, causing headaches relatively quickly. This third lighting condition I tested. Meaning, that these made it much more difficult to concentrate on the imperfections were present under the red and blue space and analyze my surroundings. However, when lighting conditions as well, but I was unable to pick "imperfections" of the space. different way than the previous lighting conditions.


Colored light reduces our visual perception to a
minimum. It makes the world monochromatic. This
is not a bad thing. In fact, it makes us more aware of our surroundings and enhances the patterns, textures, and other elements that make up an object. It goes past our ability to notice obvious conclusions
of an object and strengthens our connection to the of an object and strengthens our connection to the buit environment through a more authentic, critical, James Turrell's skyspace installation so successful).

This experiment has led me to understand the significance our perception has on understanding the built environment around us. Each lighting condition has a different effect on the way we perceive the world, meaning that each lighting condition will uncover new characteristics of the physical built environment. The issue is that we are unaware of the ability that our own perception holds and the
significance it has on the physical space around us. The only way to understand it is to experience us. I he only way to understand it is to experience
it. I would argue that we as humans have not truly experienced and uncovered all aspects of a specific built environment, until we have experienced it built environment, until we haver
under multiple light conditions.

08

## DAN FLAVIN

Dan Flavin is an American artist who creates installations that feature fluorescence light tubes in geometric arrays. These lights emit rich ambient monochrome or multicolored light that subtly displayed.

Dan Flavin sees light and color from a different perspective and goes against James furrelts and Olafur Eliason's views regarding the topic. He states how the exhibitions that he creates are exactly what you see. It is light and color, and there is nothing else
"It is what it is, and it isn't nothing' else.... There is no overwhelming spirituality you are supposed to come into contact with.... And it is very easy to understand. I do... as plain and open and direct an art as you will Ido... as plain and open
ever find" (Dan Flavin).

Flavin does not see his work as an experience, but rather a physical object that participants can view. This perspective argues that art is strictly tied to sight and can not create physical transformations
and/or challenge our visual and spatial perception.

This chapter discusses some of the critiques present
when discussing the core concepts of this thesis.
In fact, some individuals do not believe that an
experience can be achieved through the concepts of color, light, and perception. This chapter is meant present in relation to my personal investigation.


Figure 8.1
Figure 8.1
Dan Flavin Ikon Gallery


09

This chapter focuses on the relationship between key concepts discussed and architectural education. More specifically, this chapter will discuss how the
concept of color perception can used as a design concept of color perception can used as a design
tool within architectural education and how this tool can lead to alternative design approaches within a studio process.


Viewing a site under a different light wirl begin to alter the way we perceive a space. These new discoveries will allow us to see the site in a new way and make hidden elements and characteristics about the site come to the forefront. This can then be translated into the way we sketch or represent
the site. Instead of sketching the site as it visually is, begin to sketch the components of the site that came to the forefront when observed under a specific lighting condition. For example, when observing this site under red light, my attention to detail increased. Instead of seeing the site as a whole, each object was broken down into pattern, texture, and materiality. Under a blue lighting condition, $m y$
attention to color blocking and the values of color increased, meaning that my attention to the form and values that made up the site was most apparent. When observing the site under a yellow lighting condition, the edges and room borders of the site were enhanced. From this knowledge, a series of sketches were then produced that focus merely on endition enhanced in relation to the specific site.



By creating this series of sketches, it allows for three completely different design approaches to be
present. Although these images represent the exact space site, each image focuses on just one main aspect from the space (detail, space alignment, and aspect from the space (detail, space alignment, and
color blocking). To push this investigation further, series of models were then created based the sketches. Not only does created based on he sketches. Not only does this allow for these sketches to be represented three-dimensionally, new design approaches and discoveries can be built from.


Figure 9.6
Color Perception as a
Design Tool - Blue Lighting




Colored light reduces our visual perception to a This can become a powerful design tool within minimum. It makes the world monochromatic. the field of architectural education. Using color It makes us look past our ability to notice obvious perception within architectural education allows conclusions of an object and strengthens our
connection to the buits to experience and uncover new knowledge
cegrarding a space, which can lead to new innovative exploration has led me to understand the significance design approaches. What is intriguing about this our perception has on understanding the built design tool is the fact that each student would environment around us. Each lighting condition has have their own individualized experience, meanin a different effect on the way we perceive the world, that each student's approach would be unique.
meaning that each lighting condition will uncover broadens the traditional methods of architectura neaning that each lighting condition will uncover broadens the traditional methods of architectural consumed in.

- "Anthony McCall - Line Describing a Cone (MEDA301)." Keegan Litch field, 26 Apr. 2015 keeganlitchfield.wordpress.com/2015/04/26/anthony-mccall-line-describing-a-conemeda301/.
- "Anthony McCall: Solid Light Works." Pioneer Works, pioneerworks.org/exhibitions/ anthony-mccall-solid-light-works/
- Atli, Deniz, and Nilgun Olgunturk. "Effects of Colour and Chromatic Light on Depth Atil, Deniz, and Nigun Olgunturk. EEfects of Colour and Chromatic Li
- Chechar, Linda. "Changing the Size of a Room With Paint- Dengarden Home and Garden." Dengarden, Dengarden - Home and Garden, 25 Aug. 2012, dengarden.com/interior-design/Change-Your-Room-Size-With-Paint.
- "Dan Flavin: FOR PRUDENCE." Bastian, 21 Apr. 2020, www.bastian-gallery.com/en/ exhibitions/dan-flavin-for-prudence/
- Davidzwirner. "Dan Flavin." David Zwirner, www.davidzwirner.com/exhibitions/dan-flavin-paris-2019.
- Dzulkifli, M. A., \& Mustafar, M. F. (2013). The influence of colour on memory performance: a review. The Malaysian journal of medical sciences : MJMS, 20(2), 3-9. https://designlike. com/the-psychology-of-color-for-interior-design
- Eliasson, Olafur. "Olafur Eliasson on How His Light Installation at the National Gallery Changes Perceptions-in More Ways than One." The Art Newspaper, The Art Newspaper, installation-at-the-national-gallery-changes-perceptions-in-more-ways-than-one.
- Guibal, Christophe R.C, and Birgitta Dresp. "Psychological Research." Interaction of Color and Geometric Cues in Depth Perception: When Does "Red" Mean "near"?, 13 Feb. 2003, pp. 30-40.doi:10.1007/500426-003-0167-0.
- Helvacioglu, E. (2011). Colour-Emotion Association in Interior Spaces. Bilkent University. "How to Not Regret the Paint Color You Choose." HouseLogic, 30 Apr. 2019, www houselogic.com/remodel/painting-lighting/choosing-paint-colors-how-light-affects-color/.
- JASPER, A. Colour Theory. Architectural Theory Review, [s. I.], v. 19, n. 2, p. 119-123, 2014. DOI 10.1080/13264826.2014.991017.
- Kemal Yildirim, M. Lutfi Hidayetoglu, Aysen Capanoglu. (2020). Effects of Interior Colors on Mood and Preference: Comparisons of Two Living Rooms. SAGE Journals. https://doi org/10.2466/24.27.PMS.112.2.509-524
- Kendra Cherry, Colour Psychology: Does It Affect How You Fell? Verywell Mind.
- Ladd-Franklin, C. (2013). Colour And Colour Theories. Routledge. https://web-b-ebscohost-com.ezproxy.libraries.udmercy.edu/ehost/ebookviewer/ebook/ZTAwM HhuYV9fNjA2NjE1X19BTg2?sid=9729095d-58c8-437f-a0bb-c87acd3c15dd@pdc-vsessmgr06\&vid=1\&format=EB\&rid=1
- Lang, Werner, and Aurora McClain. "Color and Visual Comfort." Center for Sustainable Development, https://soa.utexas.edu/sites/default/disk/urban_ecosystems/urban ecosystems/09 03 fa kwallek riosyelasco ml pdf.
- Martinson, Barbara, and Marilyn Revell DeLong. Color and Design. English ed. London New York: Berg, 2012. Web
- Olafur Eliasson: In Real Life: Guggenheim Museum Bilbao. Guggenheim Bilbao, www. guggenheim-bilbao.eus/en/exhibitions/olafur-eliasson-in-real-life
- Painting Rooms to Change Their Size and Shape. HousePaintingTutorials.com, www housepaintingtutorials.com/painting-rooms html.
- "Room for One Colour • Artwork • Studio Olafur Eliasson." Studio Olafur Eliasson, olafureliasson.net/archive/artwork/WEK101676/room-for-one-colour.
- Souza, Eduardo. "How Colors Change the Perception of Interior Spaces." ArchDaily, ArchDaily, 9 Mar. 2020, www.archdaily.com/935067/how-colors-change-the-perception-of-interior-spaces.
- Smith, Kate. "Finally, COLOR EXPLAINED by an Expert in a Way That Everyone Can Understand." Sensational Color, www.sensationalcolor.com/light-affects-color/.
- Tate. "'Line Describing a Cone', Anthony McCall, 1973." Tate, 1 Jan. 1973, www.tate.org.uk/ art/artworks/mccall-line-describing-a-cone-t12031.
- Thomas, Fiona. "What Is Sensory Deprivation?" Happiful Magazine, Happiful Magazine, 16 Aug. 2020, happiful.com/what-is-sensory-deprivation/.
- Turrell, J. 2020. James Turrell: the Art of Light and Space, University of California Press. 1990. https://books.google.ca/books?h|=en\& $1=$ = $=$ id $=$ RN NiMBuD7MC\&oi=fnd\&pg=PR9\&dq=Jamestturrell+skyspace\&ots= CZGk94VSp\&sig=KVHyHLOZHBF5xuRiofjuOihulv skyspace\&f=false
- Watkin, D. (2005). A history of Western architecture. London: Laurence King.
- Wegman, Edward, and Yasmin Said. "Color Theory and Design." Wiley Interdisciplinary Reviews: Computational Statistics 3.2 (2011): 104-17
- "12. The Spatial Effects of Color." LibDiz, 30 Jan. 2016, libdiz.com/en/books/the-art-of color/12-the-spatial-effects-of-color/.


## IMAGE REFERENCES

- Figure 4.1. Modern Example of Chiaroscuro (Chiaro - Light, Scuro - Dark) https://flickr.com/photos/yahooeditorspicks/galleries/72157627925706630
- Figure 4.2. The Deposition of Christ - Caavaggio (1481) https://www.museivaticani.va/content/museivaticani/en/collezioni/musei/la-pinacoteca/ sala-xii---secolo-xvii/caravaggio--deposizione-dalla-croce.html
- Figure 4.3. The Deposition of Christ- Color Isolation - Original Image
- Figure 4.4. Contrast Through Hue Diagram: Color Wheel - Original Image
- Figure 4.5. Contrast Through Value Diagram: Color Wheel - Original Image
- Figure 4.6. Contrast Through Saturation Diagram: Color Wheel - Original Image
- Figure 4.7. Triadic Contrast Diagram: Color Wheel - Original Image
- Figure 4.8. Contrast Through Temperature Diagram: Color Wheel - Original Image
- Figure 4.9. Simultaneous Contrast Diagram: Color Wheel - Original Image
- Figure 4.10. Rietveld-Schroder House (1924)
https://ettyandarchitecture.weebly.com/architecture-in-context-year-2.htm|
- Figure 6.1. James Turrell- Skyspace (2005)
https:///hirambutler.com/artists/james-turrell/crystal-bridges-museum-of-american-art
- Figure 6.2. James Turrell- Skyspace (2005) https://hirambutler.com/artists//iames-turrell/crystal-bridges-museum-of-american-art
- Figure 6.3. James Turrell- Skyspace (2005)
https://hirambutler.com/artists/james-turrell/crystal-bridges-museum-of-american-art
- Figure 6.4. James Turrell- Skyspace (2005)
https://hirambutler.com/artists/j/ames-turrell/crystal-bridges-museum-of-american-art
- Figure 6.5. Olafur Eliason: A Room For One Color (1994
https://olafureliasson.net/archive/artwork/WEK101676/room-for-one-colour
- Figure 6.6. Josef Albers: After-Image Example - Original Image
- Figure 6.7. Josef Albers: Atter-Image Example - Original Image
- Figure 7.1. Experiment I Swatch Analysis: Blue Lighting Condition - Original Image
- Figure 7.2. Experiment I Swatch Analysis: Red Lighting Condition - Original Image
- Figure 7.3. Experiment I Swatch Analysis: Yellow Lighting Condition - Original Image
- Figure 7.4. Experiment I Swatch Analysis Results - Original Image
- Figure 7.5. Experiment I Swatch Analysis Results- Original Image
- Figure 7.6. Experiment II Spatial Variable Analysis - Original Image
- Figure 7.7. Experiment II Spatial Variable Analysis - Original Image
- Figure 7.8. Experiment III Hallway Analysis: Depth Perception: Red Lighting - Original Image
- Figure 7.9. Experiment III Hallway Analysis: Depth Perception: Blue Lighting - Origina Image
- Figure 7.10. Experiment IV Diagram I - What was the human behavior of each participant with the colored light most disliked?
- Figure 7.11. Experiment IV Diagram II - What is the relationship between the most disliked color and time of each participant?
- Figure 7.12. Experiment IV Diagram III - Did the participant experience after-image?
- Figure 7.13. Experiment IV Diagram IV - What is the relationship between room comfort and each participant's spatial perception?
- Figure 7.14. Experiment IV Diagram V- What is the relationship between time and each participant's spatial perception?
- Figure 7.15. Experiment IV Diagram VI- What is the relationship between human behavior and each participant's spatial perception?
- Figure 7.16. Experiment V-Image I - Image Under Red Lighting Condition- Original Image
- Figure 7.17. Experiment V- Image II - Image Under Blue Lighting Condition- Original Image
- Figure 7.18. Experiment V-Image III- Image Under Yellow Lighting Condition - Original Image
- Figure 8.1. Dan Flavin - Ikon Gallery- Light Installatio
http://artandphotography-ugg.blogspot.com/2016/04/dan-flavin-ikon-gallery.htm
- Figure 8.2. Dan Flavin- Ikon Gallery- Light Installation
http://artandphotography-uog bion
- Figure 8.2. Dan Flavin- - kon Gallery- Light Installation
http://artandphotography-uog.blogspot.com/2016/04/dan-flavin-ikon-gallery.htm|
- Figure 9.1. Studio Process Timeline- Original Image

Figure 9.2. Color Perception as a Design Tool - Sketch Under Red Lighting Condition - Original Image

- Figure 9.3. Color Perception as a Design Tool - Sketch Under Blue Lighting Condition Original Image
- Figure 9.4. Color Perception as a Design Tool - Sketch Under Yellow Lighting Condition Original Image
- Figure 9.5. Color Perception as a Design Tool - Model Under Red Lighting ConditionOriginal Image
- Figure 9.6. Color Perception as a Design Tool - Model Under Blue Lighting Condition Original Image
- Figure 9.7. Color Perception as a Design Tool - Model Under Yellow Lighting ConditionOriginal Image
- Figure 9.8. Color Perception as a Design Tool- Alternative Design Approach Based Off of Red Lighting Condition- Original Image
- Figure 9.9. Color Perception as a Design Tool-Alternative Design Approach Based Off of Blue Lighting Condition- Original Image
- Figure 9.10. Color Perception as a Design Tool - Alternative Design Approach Based Off of - Figure 9.10. Color Perception as a Design
Yellow Lighting Condition- Original Image

APPENDIX A - EXPERIMENT IV - PARTICIPANT QUESTIONNAIRE

| Red light |  |
| :---: | :---: |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? | Yes |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focusing on counting at first, then I zoned out for a few seconds Focused on sounds |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | I was looking mainly at the wall, but would turn my head to look around slightly |
| How did you feel? (tense, stressed, relaxed, tired) | Weird. It felt like I was in a different world. Kinda freaky at first. |
| Any other comments on the experience? | When I left the space, I saw green for a few seconds <br> Eyes hurt for $10-15$ seconds after |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | The size of the room fell smaller, more intimate |
| Blue Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or nol -if no - why? | Yes |
| Did you have an urge to move around? (yes or no | No - Stood still |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on Counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Wall - Appeared to change from blue to purple |
| How did you feel? (tense, stressed, relaxed, tired) | Tired - Not as freaky as the red light |
| Any other comments on the experience? | Eyes hurt a bit When I left the space, I saw an orange/ yellow colour (very intense) |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | The size of the room fell taller |
| Yellow Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? |  |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Meh - Not as comfortable as the other colors |
| Did you have an urge to move around? (yes or no | Yes - I was swaying back and forth Fidgeting |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focusing on counting and wanting to leave the space |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking at the wall, looked at the other walls occasionally |
| How did you feel? (tense, stressed, relaxed, tired) | Tense - Felt painful |
| Any other comments on the experience? | Eyes were hurting the whole time Saw blue when the light turned back to white |
| Did you notice anything about the physical space? (size of room, height of room, where things moving?) | The size of the room felt larger -much more spacious than blue and red |


| Red Light |  |
| :---: | :---: |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? (yes or no) | Movement: swaying back and forth |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focusing on counting at first, then I zoned out for a few seconds <br> Focused on sounds |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | I was looking mainly at the wall, but would turn my head to look around slightly |
| How did you feel? (tense, stressed, relaxed, tired) | Weird. If felt like I was in a different world. Kinda freaky of first |
| Any other comments on the experience? | When I left the space, I saw green for a few seconds <br> Eyes hurt for $10-15$ seconds after |
| Did you notice anything about the physical space? (size of room, height of room, where things moving ${ }^{2}$ ) | The size of the room fell smaller, more intimate |
| Blue Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? (yes or no) | No - stood still |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on Counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Wall - Appeared to change from blue to purple |
| How did you feel? (tense, stressed, relaxed, fired) | Tired - Not as freaky as the red light |
| Any other comments on the experience? | Eyes hurt a bit When I left the space, I saw an orange/ yellow colour (very intense) |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | The size of the room fell taller |
| Yellow Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Meh - Not as comfortable as the other colors |
| Did you have an urge to move around? (yes or no) | Yes - I was swaying back and forth Fidgeting |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focusing on counting and wanting to leave the space |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking at the wall, looked at the other walls occasionally |
| How did you feel? (tense, stressed, relaxed, tired) | Tense - Felt painful |
| Any other comments on the experience? | Eyes were hurting the whole time Saw blue when the light turned back to white |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | The size of the room felf larger -much more spacious than blue and red |


|  |  |
| :---: | :---: |
| Red Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? (yes or no | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | No - Because you were staring at red - Kinda scary |
| Did you have an urge to move around? (yes or no) | Yes - but stood still |
| What were you thinking? (Focused on Counting? Thinking of Nothing? etc.) | Focused on Counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking at the wall in front of her Thought her heard a clock sound |
| How did you feel? (tense, stressed, relaxed, tired etc.) | Nervous Uneasy |
| Any other comments on the experience? | Saw pinky orange Hurt when light changed to white |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Room fellt small - fell restricted |
| Blue Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? (yes or no) | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | More comfortable than red |
| Did you have an urge to move around? (yes or no) | Not move - but rocking a bit |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focusing on counting at first, then zoned out Started to look at the cloth details |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Wall - The whole time |
| How did you feel? (tense, stressed, relaxed, tired, etc.). | Did not really feel anything - Felt neutral |
| Any other comments on the experience? | When I turned the light on, everything looked warm and yellow Did not hurt when I turned the light to white |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Room fell larger and taller |
| Yellow Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? (yes or no) | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes - Felt Normal More than Red and Same as Blue |
| Did you have an urge to move around? (yes or no | No |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on Counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking straight at the wall |
| How did you feel? (tense, stressed, relaxed, tired) | Did not feel anything different |
| Any other comments on the experience? | When lights were turned back to white, she saw blue |
| Did you notice anything about the physical space? (size of room, height of room, where things space? (siz | Did not notice a huge change in room size due to the colored light |


| Red light |  |
| :---: | :---: |
|  |  |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? (yes or no) | Counting on his figures and swagging back and forth Fidgeting |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on counted When first started, reminded him a movie (scary story to tell in the dark) |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Staring at the wall |
| How did you feel? (tense, stressed, relaxed, tired, etc.). | Started off: Anxious Then was neutral the rest of the time Heavy Breathing |
| Any other comments on the experience? | When light was turned to white, it stung a bit |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Room felt a bit smaller |
| Blue light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? (yes or no) | A bit - Less than red |
| What were you thinking? (Focused on Counting? Thinking of Nothing? etc.) | Focus on counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Staring at "blue" wall |
| How did you feel? (tense, stressed, relaxed, tired) | Tired |
| Any other comments on the experience? | The light looked yellow when changed Wall looked blue than purple, blue than purple, etc. |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Did not notice a dramatic size difference |
| Yellow Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | A bif |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | No - Worst out of the red and blue by a lot |
| Did you have an urge to move around? (yes or no) | Yes - Strong urge Was moving his body around, a lot of fidgeting |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on Counting and how much you disiliked the color |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking around The light started to look green |
| How did you feel? (tense, stressed, relaxed, tired, etc.) | Anxious <br> Heavy Breathing |
| Any other comments on the experience? | When the lights were turned back to white, everything appear much brighter than normal |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Did not notice a dramatic size difference |


| Red light |  |
| :---: | :---: |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? (yes or no) | No - stood still |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Thinking of Counting zoned Out Focused on Breathing |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking at the Wall - Focusing on one specific detail |
| How did you feel? (tense, stressed, relaxed, tired, etc.) | Relaxed |
| Any other comments on the experience? | Hurt eyes at the start, then eyes adjusted When the light turned white, it looked blue green for a second |
| Did you notice anything about the physical space? (size of room, height, where things moving? | Room felts smaller and more intimate |
| Blue light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Meh - Red was more comfortable |
| Did you have an urge to move around? (yes or no | A litle bit |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on Counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Had to blink a lot, it was hurting his eyes Looking forward |
| How did you feel? (tense, stressed, relaxed, tired, etc.). | Relaxed at first, starting to get impatient and annoying closer to the end Heavy Beathing |
| Any other comments on the experience? | Eyes did not have to adjust as much as the red. |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Felt more spacious than red and yellow (not too much more than yellow) |
| Yellow Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes - More than the blue |
| Did you have an urge to move around? (yes or no) | No - little movement |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc. | Focused on counting |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | staring of the wall |
| How did you feel? (tense, stressed, relaxed, tired, etc.) | Relaxed and Comfortable |
| Any other comments on the experience? | Eyes did not hurt at all When the lights turned white nothing happened but easier transition than the blue light |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Felt a biil larger than normal |


| Red Light |  |
| :---: | :---: |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes |
| Did you have an urge to move around? (yes or no) | Fidgeting and Swaying back and Forth |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focusing on counting, then felt like he was counting to slow |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking at the wall in front of him |
| How did you feel? (tense, stressed, relaxed, tired etc.) | In his own world |
| Any other comments on the experience? | When light was turned back to white, he saw shades of yellow green When he blinked it was green |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Didn't notice a huge change in room size from the colored light |
| Blue light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? (yes or no) | No - but the space felt smaller - More intimate like the walls were hugging him) |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | Yes - More than red and yellow |
| Did you have an urge to move around? (yes or no) | No - Did not move at all |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc..) | Focusing on how the space felt smaller and how he was surrounded by the space |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looking in front of him Black dots" appeared red to him |
| How did you feel? <br> (tense, stressed, relaxed, tired, etc.) | Relaxed |
| Any other comments on the experience? | When lights turned to white, it looked very orange/ yellow |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Small felt much smaller than the red or yellow room, felt much more intimate |
| Yellow Light |  |
| Questions | Responses |
| Did you feel claustrophobic in that space? | No |
| Were you comfortable standing still in that space? (yes or no) - if no - why? | No - Felt Anxious because it was a "weird" color |
| Did you have an urge to move around? (yes or no) | Yes - Wanted to leave the same |
| What were you thinking? <br> (Focused on Counting? Thinking of Nothing? etc.) | Focused on nothing |
| What were you looking at? (At the wall? Ceiling? Had your eyes closed, etc.) | Looked at the ceiling, then the walls, then back in front of him |
| How did you feel? (tense, stressed, relaxed, tired, etc.) | Tense and anxious |
| Any other comments on the experience? | When the light turned to white, saw a second of blue <br> Really did not like that color of light |
| Did you notice anything about the physical space? (size of room, height of room, where things moving? | Felt like there were no walls - A lof of space |

